If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(2x^2+100x)/(3x+100)=100
We move all terms to the left:
x+(2x^2+100x)/(3x+100)-(100)=0
Domain of the equation: (3x+100)!=0We multiply all the terms by the denominator
We move all terms containing x to the left, all other terms to the right
3x!=-100
x!=-100/3
x!=-33+1/3
x∈R
x*(3x+100)+(2x^2+100x)-100*(3x+100)=0
We multiply parentheses
3x^2+100x+(2x^2+100x)-300x-10000=0
We get rid of parentheses
3x^2+2x^2+100x+100x-300x-10000=0
We add all the numbers together, and all the variables
5x^2-100x-10000=0
a = 5; b = -100; c = -10000;
Δ = b2-4ac
Δ = -1002-4·5·(-10000)
Δ = 210000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{210000}=\sqrt{10000*21}=\sqrt{10000}*\sqrt{21}=100\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-100\sqrt{21}}{2*5}=\frac{100-100\sqrt{21}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+100\sqrt{21}}{2*5}=\frac{100+100\sqrt{21}}{10} $
| 9y-2y=7 | | 2(2x-1)/6+5=3(x+7)/6 | | 100=x+(2x^2+100x)/(3x+100) | | 3b/6=5 | | x+4/3=2 | | 9+r/6=7 | | 126=(5x)x(3x) | | d²+10d+18=-7 | | -2/15=y+8/15 | | 3/14+p=4/7 | | P+1/2=p+9/3 | | X=-2y+51 | | 5^4=5^-6x^+5 | | 4(x-8)=8(x+5) | | -0.6x^2-3x+8.4=0 | | b/2-2=0 | | 4x-5=3/5 | | 2(x+4)=-6(x+40 | | 3(x+5)÷5=4x-3 | | P+4/10=p+8/9 | | -5+n/3=-8 | | 7+r=20 | | 9x+6+75+8x-3=180 | | -8=-3+m/3 | | 66=5u+16 | | 20+3x=28+2x | | N/n+8=5/9 | | 1/2+7x=22 | | 5.25t+9=16.5t+18 | | 8/5x+x=52 | | 12x+18x-6+5=-8x+5-6 | | -10x+6=-74 |